Mycelial growth of Scleroderma sp. as Affected by Culture Media

Main Article Content

Winslet J. Ramos Bernard S. Tad-awan

Abstract

The prevailing problem towards commercial cultivation of ectomycorrhizal mushrooms including Scleroderma sp. is the lack of protocol and information on the culture medium to produce inoculant, which is required in producing the mushroom alongside with pine. Scleroderma can be tapped as an inoculant for pine trees to increase the production of Scleroderma at the mountains which not only helps the pine trees to absorb water and nutrients from the soil but also accelerates the shoot growth and rehabilitates degraded land. To attain this, a protocol needs to be developed along with the appropriate culture medium process that may result in the mass production of Scleroderma mycelia to serve as inoculant for pine seedlings resulting in increased pine areas and production of Scleroderma. Thus, a study to compare the mycelial growth of Scleroderma sp. on two kinds of media was conducted. Results revealed that the use of Murashige and Skoog medium promoted faster mycelial growth and had the heaviest mycelial biomass. It is recommended that further studies be conducted on the optimal conditions of Scleroderma sp. as well as its inoculation to pine seedlings and testing the same media on other ectomycorrhizal fungi to strengthen and validate the study’s method as protocol on culture medium preparation.

Article Details

Section
Articles

References

Alamajah, F., Husin, E. F., Santoso, E., Putra, D. P., & Alamsjah, S. (2015). Effects of Indigenous Fagaceae-Inhabiting Ectomycorrhizal Fungi Scleroderma spp., on Growth of Lithocarpus urceolaris Seedling in Greenhouse Studies. Pakistan Journal of Biological Sciences, 18(3), 135-140. doi:10.3923/pjbs.2015.135.140

Binder, M., & Hibbett, D. S. (2006). Molecular systematics and biological diversification of Boletales. Mycologia, 98(6), 971-981. doi:10.3852/mycologia.98.6.971

Boyle, C. D., & Hellenbrand, K. E. (1991). Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Canadian Journal of Botany, 69(8), 1764-1771. doi:10.1139/b91-224

Brundrett, M. (2004). Diversity and classification of Mycelial Growth W. J. Ramos and B. S. Tad-awan 59 mycorrhizal associations. Biological Reviews, 79(3), 479-495. doi:10.1017/s1464793103006316

Brundrett, M., Bougher, N., Dell, B., Grove, T., & Malajczuk, N. (1996). Working with Mycorrhizas in Forestry and Agriculture (pp. 181-260). Canbrera, Autralia: Australian Centre for International Agricultural Research. doi:http://ageconsearch.umn.edu/record/119356/files/32.pdf

Burgess, T., Dell, B., & Malajczuk, N. (1994). Variation in Mycorrhizal Development and Growth Stimulation by 20 Pisolithus Isolates Inoculated on to Eucalyptus grandis W. Hill ex Maiden. The New Phytologist, 127(4), 731-739. Retrieved from http://www.jstor.org/stable/2558203

Castellano, M. A. & Trappe., J. M. (1985). Ectomycorrhizal formation and plantation performance of Douglas- fir nursery stock inoculated with Rhizopogonspores. Can. J. For. Res. 15, 613-617. doi:http:// doi/pdf/10.1139/x85-100

Chen, Y. L., Kang, L. H., & Dell, B. (2006). Inoculation of Eucalyptus urophylla with spores of Scleroderma in a nursery in south China: Comparison of field soil and potting mix. Forest Ecology and Management, 222(1-3), 439-449. doi:10.1016/j.foreco.2005.10.050

Chung, H., Kim, D., & Lee, S. (2002). Mycorrhizal Formations and Seedling Growth ofPinus desiflorabyin vitroSynthesis with the Inoculation of Ectomycorrhizal Fungi. Mycobiology, 30(2), 70. doi:10.4489/myco.2002.30.2.070

Day, D., & Hervey, A. H. (1946). Phycomyces In The Assay Of Thiamine In Agar. Plant Physiology, 21(2),
233-236. doi:10.1104/pp.21.2.233

Daza, A., Manjón, J. L., Camacho, M., Osa, L. R., Aguilar, A., & Santamaría, C. (2006). Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of Amanita caesarea (Scop.:Fr.) Pers. Mycorrhiza, 16(2), 133-136. doi:10.1007/s00572-005-0025-6

Declerck, S., Fortin, J. A., & Strullu, D. (2005). In Vitro Culture of Mycorrhizas (Vol. 4). New York: Springer-Verlag Berlin Heidelberg. doi:10.1007/s00572-006-0034-0.

De Leon, A. M., Kalaw, S. P., Dulay, R. M., Undan, J. R., Alfonzo, D. O., Undan, J. Q., & Reyes, R. G. (2016). Ethnomycological survey of the Kalanguya indigenous community in Caranglan, Nueva Ecija, Philippines. Current Research in Environmental & Applied Mycology, 6(2), 61-66. doi:10.5943/cream/6/2/1

Erlan, S. & Söderström, B. (1990). Effects of Liming on Ectomycorrhizal Fungi Infecting Pinus sylvestris L. I. Mycorrhizal Infection in Limed Humus in the Laboratory and Isolation of Fungi from Mycorrhizal Roots. The New Pathologist, 115 (4), 675-682

Hamad, H. O., Alma, M. H., Ismael, H. M., & Göçeri, A. (2014). The Effect of Some Sugars on the Growth of Aspergillus niger. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 17(4), 7-11. Retrieved May 1, 2018, from http://dergipark.gov.tr/download/article-file/212081

Jargeat, P., Rekangal, D., Verner, M., Gay, G., Debaud, J. C., Marmeisse, R., & Fraissinet-Tachet, L. (2003). Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Current Genetics, 43(3), 199-205. doi:https://doi.org/10.1007/s00294-003-0387-2

Jo, W., Kang, M., Choi, S., Yoo, Y., Seok, S., & Jung, H. (2010). Culture Conditions for Mycelial Growth of Coriolus versicolor. Mycobiology, 38(3), 195-202.doi:10.4489/myco.2010.38.3.195

Kalmis, E., & Kalyoncu, F. (2008). Mycelial Growth Rate of Some Morels (Morchella spp.) In Four Different Microbiological Media. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(6), 861-864. Retrieved from https://www.researchgate.net/profile/Fatih_Kalyoncu/publication/200580923_
Mycelial_growth_rate_of_some_morels_Mo chella_spp_in_four_different_microbiologi cal_media/links/05fc92f57d85dbc949c0d6e6/Mycelialgrowth-rate-of-some morels-Morchella-spp-infour-different-microbiological-media.pdf.

Kim, S., Hwang, H. J., Xu, C. P., Na, Y. S., Song, S. K., & Yun, J. W. (2002). Influence of nutritional conditions on the mycelial growth and exopolysaccharide production in Paecilomyces sinclairii. Letters in Applied Microbiology, 34(6), 389-393. doi:10.1046/j.1472-765x.2002.01105.x

Kumla, J., Suwannarach, N., & Suwannarach, S. (2016). Characterization of Pisolithus orientalis in culture and in vitro mycorrhization with Eucalyptus camaldulensis and Pinus kesiya. Mycosphere, 7(9), 1415-1424. doi:10.5943/mycosphere/7/9/14

Lee, W. H., Kim, S. Y., Park, Y. J., Kim, T. W., Kim, H., & Sung, J. M. (2004). Favorable Conditions for Mycelial Growth of Phellinus linteus. The Korean Journal of Mycology, 32(2), 95-100. doi:10.4489/kjm.2004.32.2.095

Langer, I., Krpata, D., Peintner, U., Wenzel, W. W., & Schweiger, P. (2008). Media formulation influences in vitro ectomycorrhizal synthesis on the European aspen Populus tremula L. Mycorrhiza, 18(6-7), 297-307. doi:10.1007/s00572-008-0182-5

Malajczuk, N., & Hartney, V.J. (1986). Procedures for Inoculation of Micropropagated plantlets of Eucalyptus camaldulensis with ectomycorrhizal fungi, and comparison with seedling inoculation using inoculum contained in a peat/vermiculite carrier. Australian Forestry Research,16, 199-206.

Marx, D. H. (1969). Modified Melin-Norkrans Medium. Phytophathology, 59, 152-163

Molina, R. (1979). Ectomycorrhizal Inoculation of Containerized Douglas-fir and Lodgepole Pine Seedlings with Six Isolates of Pisolithus tinctorius [Abstract]. Forest Science, 25, 585-590. Retrieved from https://www.researchgate.net/publication/233506628_Ectomycorrhizal_
Inoculation_of_Containerized_Douglas-fir_and_Lodgepole_Pine_Seedlings_with_Six_Isolates_of_Pisolithus_tinctorius.

Nehls, U. (2008). Mastering ectomycorrhizal symbiosis: The impact of carbohydrates. Journal of Experimental Botany, 59 (5), 1097-1108.doi:10.1093/jxb/erm334

Purohit, S.S. & Mathur, S.K. (1999). Drugs in Biotechnology Fundamentals and Applications. S. S. Purohit Maximillan Publishers: India. P. 576

Rincón, A., Alvarez, I. F., & Pera, J. (2001). Inoculation of containerized Pinus pinea L. seedlings with seven ectomycorrhizal fungi. Mycorrhiza, 11 (6), 265-271. doi:10.1007/s005720100127

Saha, A., Mandal, P., Dasgupta, S., & Saha, D. (2008). Influence of culture media and environmental factors on mycelial growth and sporulation of Lasiodiplodiatheobromae (Pat.) Griffon and Maubl. Journal of Environmental Biology, 29 (3), 407-410. Retrieved April 27, 2018, from https://www.researchgate.net/publication/23440306_Influence_of_culture_media
_and_environmental_factors_on_mycelial_growth_and_sporulation_of_
Lasiodiplodia_theobromae_Pat_Griffon_and_Maubl.

Sánchez, F., Honrubia, M., & Torres, P. (2001). Effects of pH, water stress and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests. Cryptogamie Mycologie, 22 (4), 243-258. doi:10.1016/s0181-1584(01)01076-4

Siri-in, J., Kumla, J., Suwannarach, N., & Lumyong, S. (2014). Culture Conditions and Some Properties of Pure Culture of Ectomycorrhizal Fungus, Scleroderma sinnamariense. Chiang Mai Journal of Science, 41 (2), 275-285. Retrieved from https://www.researchgate.net/publication/287454708_Culture_Conditions_
and_Some_Properties_of_Pure_Culture_of_Ectomycorrhizal_Fungus_
Scleroderma_sinnamariense.

Stuart, G. U., Jr. (2017). Baguio pine, pinus insularis, benguet pine: Philippine Medicinal Herbs/ Philippine Alternative Medicine. Retrieved November 15, 2017, from http://www.stuartxchange.org/BaguioPine

Tommerup, I.C. & Malajczuk, N. (1993). Genetics and Moleculargenetics of Mycorrhiza. Advances in Plant Pathology, 9, 103-134.

Van Der Heijden, M. G., Martin, F. M., Selosse, M., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205 (4), 1406-1423. doi:10.1111/nph.13288

Xu, M., Zhu, J., Kang, H., Xu, A., Zhang, J., & Li, F. (2008). Optimum conditions for pure culture of major ectomycorrhizal fungi obtained from Pinus sylvestris var. mongolica plantations in southeastern Keerqin sandy lands, China. Journal of Forestry Research, 19 (2), 113-118. doi:10.1007/s11676-008-0019-2